Class XI- MATHEMATICS Chapter-2 : RELATIONS and FUNCTIONS Hand out of Module 2/2

Learning Outcome:

In this module we are going to learn about

- ➢ Functions
- > Domain, Co-domain and Range of a Function
- > Types of functions

Function: A relation f from a set A to a set B is said to be a function if every element of set A has one and only one image in set B.

If f is a function from A to B and (a, b) ϵ f, then f (a) = b, where 'b' is called the image of 'a' under f and 'a' is called the pre image of 'b' under f.

The function *f* from A to B is denoted by $f : A \rightarrow B$

Example 1:

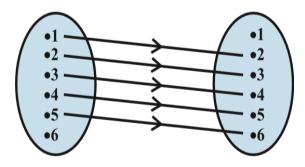
Let $A = \{1, 2, 3, 4, 5, 6\}$. Define a relation R from A to A by

 $R = \{(x, y) : y = x + 1\}$ (i) Depict this relation using an arrow diagram. (ii) Write down the domain, codomain and range of R.

(iii) Is the given relation a function? Give reason.

Solution:

(i). Following figure depicts the relation $R = \{(x, y) : y = x + 1\}$.



(ii) Domain = $\{1, 2, 3, 4, 5, 6\}$. Co-domain = $\{1, 2, 3, 4, 5, 6\}$, Range = $\{2, 3, 4, 5, 6\}$

(iii) Since the element '6' in the domain is not having an image, this relation is not a function.

Example 2:

Let **N** be the set of natural numbers and the relation R be defined on N such that $R = \{(x, y) : y = 2x, x, y \in \mathbb{N}\}.$

What is the domain, codomain and range of R? Is this relation a function?

Solution: The domain of R is the set of natural numbers N. The codomain is also N. The range is the set of even natural numbers.

Since every natural number *n* has one and only one image, this relation is a function.

Example 3 :

Examine each of the following relations given below and state in each case, giving reasons whether it is a function or not?

(i). $\mathbf{R} = \{(2, 1), (3, 1), (4, 2)\}$

(ii). $R = \{(2, 2), (2, 4), (3, 3), (4, 4)\}$

(iii). $\mathbf{R} = \{(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7)\}$

Solution (i) Since 2, 3, 4 are the elements of domain of R having their unique images,

this relation R is a function.

(ii) Since the same first element 2 corresponds to two different images 2 and 4, this relation is not a function.

(iii) Since every element has one and only one image, this relation is a function.

Note:

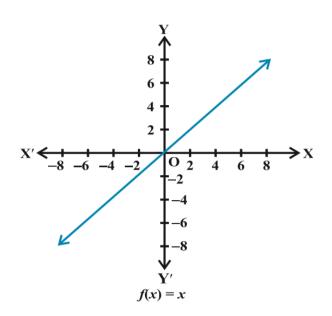
1) A function which has either R or one of its subsets as its range is called areal valued function.

2) A function which has either R or one of its subsets as domain & range is called a real function.

Some functions and their graphs

(i). <u>Identity function</u>:

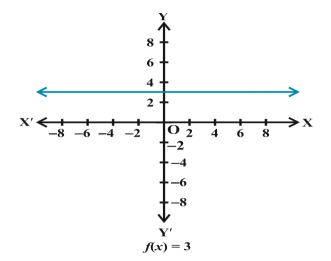
Let **R** be the set of real numbers. Define the real valued function $f : \mathbf{R} \to \mathbf{R}$ by $\mathbf{y} = f(\mathbf{x}) = \mathbf{x}$ for each $\mathbf{x} \in$ **R**. Such a function is called the identity function. Here the domain and range of f are **R**. The graph is a straight line. It passes through the origin.



(ii) Constant function:

Define the function $f : \mathbf{R} \to \mathbf{R}$ by $y = f(x) = c, x \in \mathbf{R}$ where *c* is a constant and each $x \in \mathbf{R}$. Here domain of *f* is **R** and its range is $\{c\}$. The graph is a line parallel to *x*-axis. For example, if f(x) = 3 for each $x \in \mathbf{R}$, then its graph will be a line

parallel to x-axis as shown in the adjacent figure.



(iii) **Polynomial function**:

A function f: $\mathbb{R} \to \mathbb{R}$ defined by $f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$, where n is a non-negative integer and $a_0, a_1, ..., a_n \in \mathbb{R}$ is called a polynomial function. **Note:**

- 1). The function f defined by f(x) = ax + b, $x \in R$, is called linear function, where a, $b \in \mathbf{R}$
- 2) The function f defined by $f(x) = ax^2 + bx + c$, $x \in R$, is called quadratic function,

where a , band $c \in \mathbf{R}$

Example 1:

Let R be the set of real numbers. Define the real

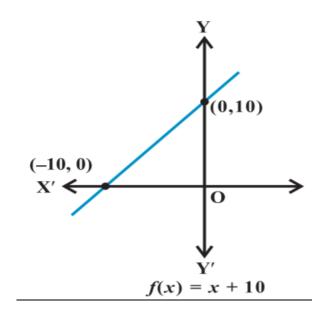
function f: $R \rightarrow R$ by f(x) = x + 10 and sketch the graph of this function.

Solution :

Domain of $f = \{x : x \in R\}$.

Range of $f = \{x^2 : x \in R\}.$

X	-10	-1	0	1	2
$\mathbf{y} = \mathbf{f}(\mathbf{x})$	0	9	10	11	12



Example 2:

Draw the graph of the function $f : R \rightarrow R$ defined by

 $f(x) = x^2$, $x \in \mathbf{R}$.

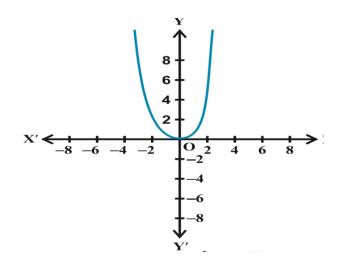
Solution :

Domain of
$$f = \{x : x \in R\}$$
.

Range of $f = \{x^2 : x \in R\}.$

X	-2	-1	0	1	2
$\mathbf{y} = \mathbf{f}(\mathbf{x})$	4	1	0	1	4

The graph of $\mathbf{f}(\mathbf{x}) = \mathbf{x}^2$ is given in the adjacent figure



Example 3:

Draw the graph of the function $f: R \to R$ defined

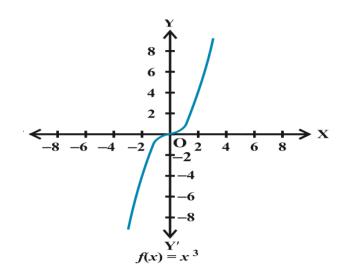
by $f(x) = x^3$, $x \in \mathbb{R}$.

Solution : Domain of $f = \{x : x \in R\}$.

Range of $f = \{x^3 : x \in R\}.$

X	-2	-1	0	1	2
$\mathbf{y} = \mathbf{f}(\mathbf{x})$	-8	-1	0	1	8

The graph of $\mathbf{f}(\mathbf{x}) = \mathbf{x}^3$ is given in the adjacent figure



(iv). <u>Rational functions</u>:

A function f: $R \rightarrow R$ is said to be rational function if

 $f(x) = \frac{g(x)}{h(x)}$, where g(x) and h(x) are polynomial functions of x defined in a domain, where $h(x) \neq 0$.

Example:

Consider the real valued function $f : R - \{0\} \rightarrow R$ defined by $f(x) = \frac{1}{x}$, $x \in R - \{0\}$. What is the

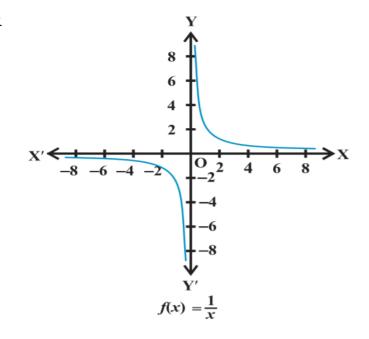
domain and range of this function?

Draw the graph of this function.

Solution:

The domain is all real numbers except 0 and its range is also all real numbers except 0.

The graph of f is given in the adjacent figure.

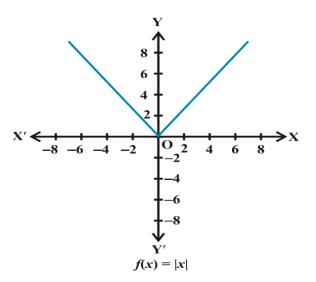


(v). <u>The Modulus function</u>:

The function f: $\mathbb{R} \to \mathbb{R}$ defined by f(x) = |x| for each $x \in \mathbb{R}$ is called *modulus function*. For each non-negative value of x, f(x) is equal to x. But for negative values of x, the value of f(x) is the negative of the value of x.

i.e.
$$f(x) = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x < 0 \end{cases}$$

The graph of the modulus function is given in the adjacent figure.

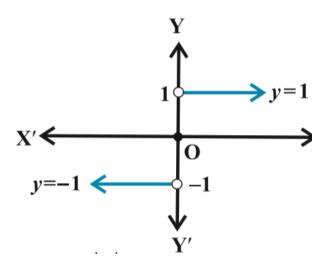


(vi).Signum function:

The function f: $R \rightarrow R$ defined by

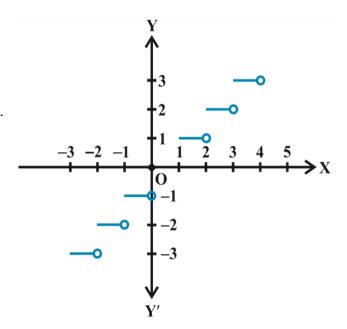
$$f(x) = \begin{cases} 1, & \text{if } x > 0\\ 0, & \text{if } x = 0 \text{ is called the signum function. The}\\ -1, & \text{if } x < 0 \end{cases}$$

domain of the signum function is R and the range is the set $\{-1, 0, 1\}$. The graph of the signum function is shown in the adjacent figure.



(vii). Greatest integer function:

The function f: $\mathbb{R} \to \mathbb{R}$ defined by f(x) = [x], $x \in \mathbb{R}$ assumes the value of the greatest integer, less than or equal to x. Such a function is called the greatest integer function. From the definition of [x], we can see that [x] = -1 for $-1 \le x < 0$ [x] = 0 for $0 \le x < 1$ [x] = 1 for $1 \le x < 2$ [x] = 2 for $2 \le x < 3$ and so on. The graph of the function is shown in the adjacent figure. For greatest integer function, Domain = \mathbb{R} and Range = Z



Example:

Find the domain of the function $f(x) = \frac{x^2+3x+5}{x^2-5x+6}$

Solution : Since $x^2 - 5x + 6 = (x - 2) (x - 3)$, the function f is defined for all real numbers except at x = 2 and x = 3. Hence the domain of f is $R - \{2, 3\}$.